3.2.13 \(\int \frac {x (a+b \text {ArcSin}(c x))}{\sqrt {d-c^2 d x^2}} \, dx\) [113]

Optimal. Leaf size=67 \[ \frac {b x \sqrt {1-c^2 x^2}}{c \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))}{c^2 d} \]

[Out]

b*x*(-c^2*x^2+1)^(1/2)/c/(-c^2*d*x^2+d)^(1/2)-(a+b*arcsin(c*x))*(-c^2*d*x^2+d)^(1/2)/c^2/d

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 67, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {4767, 8} \begin {gather*} \frac {b x \sqrt {1-c^2 x^2}}{c \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))}{c^2 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x*(a + b*ArcSin[c*x]))/Sqrt[d - c^2*d*x^2],x]

[Out]

(b*x*Sqrt[1 - c^2*x^2])/(c*Sqrt[d - c^2*d*x^2]) - (Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]))/(c^2*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 4767

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^(
p + 1)*((a + b*ArcSin[c*x])^n/(2*e*(p + 1))), x] + Dist[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p
], Int[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*
d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rubi steps

\begin {align*} \int \frac {x \left (a+b \sin ^{-1}(c x)\right )}{\sqrt {d-c^2 d x^2}} \, dx &=-\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{c^2 d}+\frac {\left (b \sqrt {1-c^2 x^2}\right ) \int 1 \, dx}{c \sqrt {d-c^2 d x^2}}\\ &=\frac {b x \sqrt {1-c^2 x^2}}{c \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{c^2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 64, normalized size = 0.96 \begin {gather*} \frac {b c x \sqrt {1-c^2 x^2}+a \left (-1+c^2 x^2\right )+b \left (-1+c^2 x^2\right ) \text {ArcSin}(c x)}{c^2 \sqrt {d-c^2 d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x*(a + b*ArcSin[c*x]))/Sqrt[d - c^2*d*x^2],x]

[Out]

(b*c*x*Sqrt[1 - c^2*x^2] + a*(-1 + c^2*x^2) + b*(-1 + c^2*x^2)*ArcSin[c*x])/(c^2*Sqrt[d - c^2*d*x^2])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.11, size = 159, normalized size = 2.37

method result size
default \(-\frac {a \sqrt {-c^{2} d \,x^{2}+d}}{c^{2} d}+b \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (c^{2} x^{2}-i \sqrt {-c^{2} x^{2}+1}\, x c -1\right ) \left (\arcsin \left (c x \right )+i\right )}{2 c^{2} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i \sqrt {-c^{2} x^{2}+1}\, x c +c^{2} x^{2}-1\right ) \left (\arcsin \left (c x \right )-i\right )}{2 c^{2} d \left (c^{2} x^{2}-1\right )}\right )\) \(159\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-a/c^2/d*(-c^2*d*x^2+d)^(1/2)+b*(-1/2*(-d*(c^2*x^2-1))^(1/2)*(c^2*x^2-I*(-c^2*x^2+1)^(1/2)*x*c-1)*(arcsin(c*x)
+I)/c^2/d/(c^2*x^2-1)-1/2*(-d*(c^2*x^2-1))^(1/2)*(I*(-c^2*x^2+1)^(1/2)*x*c+c^2*x^2-1)*(arcsin(c*x)-I)/c^2/d/(c
^2*x^2-1))

________________________________________________________________________________________

Maxima [A]
time = 0.48, size = 58, normalized size = 0.87 \begin {gather*} \frac {b x}{c \sqrt {d}} - \frac {\sqrt {-c^{2} d x^{2} + d} b \arcsin \left (c x\right )}{c^{2} d} - \frac {\sqrt {-c^{2} d x^{2} + d} a}{c^{2} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

b*x/(c*sqrt(d)) - sqrt(-c^2*d*x^2 + d)*b*arcsin(c*x)/(c^2*d) - sqrt(-c^2*d*x^2 + d)*a/(c^2*d)

________________________________________________________________________________________

Fricas [A]
time = 2.40, size = 92, normalized size = 1.37 \begin {gather*} -\frac {\sqrt {-c^{2} d x^{2} + d} \sqrt {-c^{2} x^{2} + 1} b c x + {\left (a c^{2} x^{2} + {\left (b c^{2} x^{2} - b\right )} \arcsin \left (c x\right ) - a\right )} \sqrt {-c^{2} d x^{2} + d}}{c^{4} d x^{2} - c^{2} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

-(sqrt(-c^2*d*x^2 + d)*sqrt(-c^2*x^2 + 1)*b*c*x + (a*c^2*x^2 + (b*c^2*x^2 - b)*arcsin(c*x) - a)*sqrt(-c^2*d*x^
2 + d))/(c^4*d*x^2 - c^2*d)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*asin(c*x))/(-c**2*d*x**2+d)**(1/2),x)

[Out]

Exception raised: TypeError >> Invalid comparison of non-real zoo

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arcsin(c*x) + a)*x/sqrt(-c^2*d*x^2 + d), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x\,\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}{\sqrt {d-c^2\,d\,x^2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a + b*asin(c*x)))/(d - c^2*d*x^2)^(1/2),x)

[Out]

int((x*(a + b*asin(c*x)))/(d - c^2*d*x^2)^(1/2), x)

________________________________________________________________________________________